论文标题
使用端到端的深度强化学习,在现实世界中的室内环境中的视觉导航
Visual Navigation in Real-World Indoor Environments Using End-to-End Deep Reinforcement Learning
论文作者
论文摘要
视觉导航对于从操作,到移动机器人技术到自动驾驶的许多应用程序至关重要。深钢筋学习(DRL)提供了一种优雅的无地图方法,将图像处理,本地化和计划集成在一个模块中,可以对其进行培训,从而针对给定的环境进行优化。但是,迄今为止,基于DRL的Visual Navigation仅在模拟中验证,其中模拟器提供了现实世界中无法提供的信息,例如机器人的位置或图像分割掩码。这排除了在真正的机器人上使用的策略的使用。因此,我们提出了一种新颖的方法,该方法可以直接部署真正的机器人的训练有素的政策。我们已经设计了视觉辅助任务,量身定制的奖励方案以及一个新的强大模拟器,以促进域随机化。该策略对从现实世界环境收集的图像进行了微调。我们已经在真实办公环境中的移动机器人上评估了该方法。培训花费了一个大约30个小时的GPU。在30个导航实验中,机器人在超过86.7%的病例中达到了目标的0.3米社区。该结果使提出的方法直接适用于移动操作等任务。
Visual navigation is essential for many applications in robotics, from manipulation, through mobile robotics to automated driving. Deep reinforcement learning (DRL) provides an elegant map-free approach integrating image processing, localization, and planning in one module, which can be trained and therefore optimized for a given environment. However, to date, DRL-based visual navigation was validated exclusively in simulation, where the simulator provides information that is not available in the real world, e.g., the robot's position or image segmentation masks. This precludes the use of the learned policy on a real robot. Therefore, we propose a novel approach that enables a direct deployment of the trained policy on real robots. We have designed visual auxiliary tasks, a tailored reward scheme, and a new powerful simulator to facilitate domain randomization. The policy is fine-tuned on images collected from real-world environments. We have evaluated the method on a mobile robot in a real office environment. The training took ~30 hours on a single GPU. In 30 navigation experiments, the robot reached a 0.3-meter neighborhood of the goal in more than 86.7% of cases. This result makes the proposed method directly applicable to tasks like mobile manipulation.