论文标题
改进的运行时结果,用于对线性函数的简单随机搜索启发式术,并具有统一约束
Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint
论文作者
论文摘要
在过去的十年中,在开发合适的证明技术来分析随机搜索启发式方面取得了显着进展。这些算法对功能类别的理论研究对于理解潜在的随机过程至关重要。传统上已经研究了线性函数,从而在此类问题的简单随机搜索算法的预期优化时间范围很紧。最近,这个问题的受限版本引起了人们的关注,并且在此类问题上也获得了一些理论结果。在本文中,我们研究了在统一约束下的线性函数类别,并研究了随机局部搜索(RLS)的预期优化时间和称为(1+1)ea的简单进化算法。我们证明了RLS的$θ(n^2)$的紧密连接,并将以前最著名的上限(1+1)EA的上限从$ o(n^2 \ log(bw _ {\ max})$(n^2 \ log b)$(n^2 \ log b)的期望值(n^2 \ log n)$($ o(n^2 \ log n)$ b a $ a},$ w y} $(线性目标函数和统一约束的结合。此外,我们在特殊类别的实例上获得了(1+1)ea的$ O(n^2)$的紧密限制。我们通过实验研究来补充我们的理论研究,这些研究考虑了$ b $的不同值以及更高的突变率,这些突变率反映了一个事实,即2美元的翻转对于处理统一约束至关重要。
In the last decade remarkable progress has been made in development of suitable proof techniques for analysing randomised search heuristics. The theoretical investigation of these algorithms on classes of functions is essential to the understanding of the underlying stochastic process. Linear functions have been traditionally studied in this area resulting in tight bounds on the expected optimisation time of simple randomised search algorithms for this class of problems. Recently, the constrained version of this problem has gained attention and some theoretical results have also been obtained on this class of problems. In this paper we study the class of linear functions under uniform constraint and investigate the expected optimisation time of Randomised Local Search (RLS) and a simple evolutionary algorithm called (1+1) EA. We prove a tight bound of $Θ(n^2)$ for RLS and improve the previously best known upper bound of (1+1) EA from $O(n^2 \log (Bw_{\max}))$ to $O(n^2\log B)$ in expectation and to $O(n^2 \log n)$ with high probability, where $w_{\max}$ and $B$ are the maximum weight of the linear objective function and the bound of the uniform constraint, respectively. Also, we obtain a tight bound of $O(n^2)$ for the (1+1) EA on a special class of instances. We complement our theoretical studies by experimental investigations that consider different values of $B$ and also higher mutation rates that reflect the fact that $2$-bit flips are crucial for dealing with the uniform constraint.