论文标题

关于最深度电路步骤的近似性的注释

A Note on the Approximability of Deepest-Descent Circuit Steps

论文作者

Borgwardt, Steffen, Brand, Cornelius, Feldmann, Andreas Emil, Koutecký, Martin

论文摘要

线性程序(LPS)可以通过沿电路方向多个移动来求解,从而改善了目标最深入的最深度步骤(DD-Steps)。计算这些步骤是NP-HARD(De Loera等,Arxiv,2019年),这是由于确定具有非唯一Optima的LPS上的最佳电路 - 邻居(OCNP)的硬度的结果。 我们证明OCNP在独特的Optima的承诺下很容易,但是已经$ O(n^{1- \ Varepsilon})$ - 近似DD-Steps近似于完全单模型的$ n $ dimensional-demensional 0/1-lps,具有独特的最佳效果。我们提供匹配的$ n $ approximation。

Linear programs (LPs) can be solved by polynomially many moves along the circuit direction improving the objective the most, so-called deepest-descent steps (dd-steps). Computing these steps is NP-hard (De Loera et al., arXiv, 2019), a consequence of the hardness of deciding the existence of an optimal circuit-neighbor (OCNP) on LPs with non-unique optima. We prove OCNP is easy under the promise of unique optima, but already $O(n^{1-\varepsilon})$-approximating dd-steps remains hard even for totally unimodular $n$-dimensional 0/1-LPs with a unique optimum. We provide a matching $n$-approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源