论文标题
有缺陷品种的生育几何形状,II
Birational geometry of defective varieties, II
论文作者
论文摘要
令$ x \ subset \ mathbb {p}^r $保持平稳且不可修复,对于$ k \ ge 0 $ let $ n $ net $ν_k(x)$(resp。,$Δ_K(x)$)为$ k $ th contact(seves。 For all $k \ge 0$ we have the inequality $ν_k(X) \ge δ_k(X)$ and in the case $k=1$ we characterize projective varieties $X$ for which equality holds, $\dim \mathrm{Sing}(X) \le δ_1(X) -1$ and the generic tangential contact locus is reducible.
Let $X \subset \mathbb{P}^r$ be smooth and irreducible and for $k \ge 0$ let $ν_k(X)$ (resp., $δ_k(X)$) be the $k$-th contact (resp., the $k$-th secant) defect of $X$. For all $k \ge 0$ we have the inequality $ν_k(X) \ge δ_k(X)$ and in the case $k=1$ we characterize projective varieties $X$ for which equality holds, $\dim \mathrm{Sing}(X) \le δ_1(X) -1$ and the generic tangential contact locus is reducible.