论文标题
比较Kilonova瞬变的倾斜度依赖分析
Comparing inclination dependent analyses of kilonova transients
论文作者
论文摘要
对AT2017GFO的检测证明,二元中子星星合并是基洛诺维的祖细胞。该社区结合了数值偏移性和辐射转移模拟的组合,为这些瞬态开发了复杂的模型,以为广泛的预期参数空间的广泛模型开发了复杂的模型。使用这些模拟和由它们制成的替代模型,可以对观察到的信号进行贝叶斯推断,以推断出弹出物质的性质。已经指出的是,将Kilonova与重力波测量得出的倾斜度约束相结合,提高了可以测量二进制参数的精度,并允许对哈勃常数的更准确推断。为了不引入偏见,对AT2017GFO的倾斜角度的约束应对使用的模型不敏感。在这项工作中,我们比较了社区所使用的射出和辐射后代的不同假设,并研究了它们对参数推断的影响。尽管大多数推断的参数一致,但我们发现文献中已使用的不同几何形状的倾斜角度的后角分歧。根据我们的研究,不同喷射类型之间的光子重新加工改善了建模拟合到AT2017GFO,在某些情况下会影响推断的约束。我们的研究激发了将大型$ \ sim $ 1 mag的不确定性纳入用于贝叶斯分析的Kilonova模型中,以捕获但未知的系统学,尤其是在推断倾斜角度时,尽管较小的不确定性似乎适合捕获其他参数的模型系统学。我们还使用这种方法对Kilonova AT2017GFO的喷射几何形状施加了软限制。
The detection of AT2017gfo proved that binary neutron star mergers are progenitors of kilonovae. Using a combination of numerical-relativity and radiative-transfer simulations, the community has developed sophisticated models for these transients for a wide portion of the expected parameter space. Using these simulations and surrogate models made from them, it has been possible to perform Bayesian inference of the observed signals to infer properties of the ejected matter. It has been pointed out that combining inclination constraints derived from the kilonova with gravitational-wave measurements increases the accuracy with which binary parameters can be measured and allows a more accurate inference of the Hubble Constant. In order to not introduce biases, constraints on the inclination angle for AT2017gfo should be insensitive to the employed models. In this work, we compare different assumptions about the ejecta and radiative reprocesses used by the community and we investigate their impact on the parameter inference. While most inferred parameters agree, we find disagreement between posteriors for the inclination angle for different geometries that have been used in the literature. According to our study, the inclusion of reprocessing of the photons between different ejecta types improves the modeling fits to AT2017gfo and in some cases affects the inferred constraints. Our study motivates the inclusion of large $\sim$ 1 mag uncertainties in the kilonova models employed for Bayesian analysis to capture yet unknown systematics, especially when inferring inclination angles, although smaller uncertainties seem appropriate to capture model systematics for other parameters. We also use this method to impose soft constraints on the ejecta geometry of the kilonova AT2017gfo.