论文标题

来自并发约束编程的代数结构,用于多代理系统中的分布式信息

Algebraic Structures from Concurrent Constraint Programming Calculi for Distributed Information in Multi-Agent Systems

论文作者

Guzmán, Michell, Knight, Sophia, Quintero, Santiago, Ramírez, Sergio, Rueda, Camilo, Valencia, Frank

论文摘要

空间约束系统(SC)是同时系统中有关空间和认知信息的推理的语义结构。我们开发SC的理论来推理潜在无限群体的分布信息。我们将一组代理的分布式信息的概念表征为一组代表组中代理空间的联接保护函数的最小值。我们将该概念作为满足某些基本属性的最伟大的联接保护功能的替代表征。对于完全分布的晶格,我们确定一个组的分布式信息是最大的信息,低于该小组中代理中的所有可能信息组合,这些信息会导出给定信息。我们显示了这些特征和条件的组成性结果,在这些特征和条件下,无限基团可以获得的信息也可以由有限组获得。最后,我们提供了数学形态的应用,其中扩张(其基本操作之一)在Powerset晶格上定义了SC。我们表明,分布式信息代表此类SC中的特定扩张。

Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic information in concurrent systems. We develop the theory of scs to reason about the distributed information of potentially infinite groups. We characterize the notion of distributed information of a group of agents as the infimum of the set of join-preserving functions that represent the spaces of the agents in the group. We provide an alternative characterization of this notion as the greatest family of join-preserving functions that satisfy certain basic properties. For completely distributive lattices, we establish that distributed information of a group is the greatest information below all possible combinations of information in the spaces of the agents in the group that derive a given piece of information. We show compositionality results for these characterizations and conditions under which information that can be obtained by an infinite group can also be obtained by a finite group. Finally, we provide an application on mathematical morphology where dilations, one of its fundamental operations, define an scs on a powerset lattice. We show that distributed information represents a particular dilation in such scs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源