论文标题

跨数据库面部年龄估计中的偏置缓解损失的损失

A Flatter Loss for Bias Mitigation in Cross-dataset Facial Age Estimation

论文作者

Akbari, Ali, Awais, Muhammad, Feng, Zhen-Hua, Farooq, Ammarah, Kittler, Josef

论文摘要

面部年龄估计中最现有的研究假设训练和测试图像是在类似的拍摄条件下捕获的。但是,这在现实世界中很少有效,在现实世界中,培训和测试集通常具有不同的特征。在本文中,我们主张一项跨数据集协议,用于年龄估计基准测试。为了提高跨数据库年龄估计的性能,我们减轻了学习算法本身引起的固有偏见。为此,我们提出了一种对神经网络训练更有效的新型损失功能。提出的损失函数的相对平滑度是其在随机梯度下降(SGD)执行的优化过程方面的优势。与现有的损失函数相比,提出的损失函数的较低梯度导致SGD的收敛到更好的最佳点,从而更好地概括。交叉数据集实验结果表明,就准确性和概括能力而言,所提出的方法优于最先进的算法。

The most existing studies in the facial age estimation assume training and test images are captured under similar shooting conditions. However, this is rarely valid in real-world applications, where training and test sets usually have different characteristics. In this paper, we advocate a cross-dataset protocol for age estimation benchmarking. In order to improve the cross-dataset age estimation performance, we mitigate the inherent bias caused by the learning algorithm itself. To this end, we propose a novel loss function that is more effective for neural network training. The relative smoothness of the proposed loss function is its advantage with regards to the optimisation process performed by stochastic gradient descent (SGD). Compared with existing loss functions, the lower gradient of the proposed loss function leads to the convergence of SGD to a better optimum point, and consequently a better generalisation. The cross-dataset experimental results demonstrate the superiority of the proposed method over the state-of-the-art algorithms in terms of accuracy and generalisation capability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源