论文标题

DLWIOT:授权IoT的深度学习水印

DLWIoT: Deep Learning-based Watermarking for Authorized IoT Onboarding

论文作者

Mastorakis, Spyridon, Zhong, Xin, Huang, Pei-Chi, Tourani, Reza

论文摘要

在世界上,IoT用户对IoT设备的登机既构成了挑战,也构成了必要性,在这个世界上,物联网设备的数量和针对他们的篡改攻击不断增加。当今通常使用的登机技术包括使用QR码,销钉代码或序列号。这些技术通常不会防止未经授权的设备访问-A QR码在设备上进行物理印刷,而PIN代码可能包含在设备包装中。结果,任何具有物理访问设备的实体都可以将其载入其网络上,并可能篡改它(例如,在设备上安装恶意软件)。为了解决这个问题,在本文中,我们提出了一个框架,称为授权IoT(DLWIOT)的基于深度学习的水印(DLWIOT),该框架具有基于深神经网络的强大且完全自动化的图像水印方案。 DLWIOT将用户凭据嵌入到运营商图像中(例如,在物联网设备上打印的QR码),因此仅授权用户才能在IOT上进行IOT。我们的实验结果表明了DLWIOT的可行性,表明授权用户可以在2.5-3sec内使用DLWIOT登上IoT设备。

The onboarding of IoT devices by authorized users constitutes both a challenge and a necessity in a world, where the number of IoT devices and the tampering attacks against them continuously increase. Commonly used onboarding techniques today include the use of QR codes, pin codes, or serial numbers. These techniques typically do not protect against unauthorized device access-a QR code is physically printed on the device, while a pin code may be included in the device packaging. As a result, any entity that has physical access to a device can onboard it onto their network and, potentially, tamper it (e.g.,install malware on the device). To address this problem, in this paper, we present a framework, called Deep Learning-based Watermarking for authorized IoT onboarding (DLWIoT), featuring a robust and fully automated image watermarking scheme based on deep neural networks. DLWIoT embeds user credentials into carrier images (e.g., QR codes printed on IoT devices), thus enables IoT onboarding only by authorized users. Our experimental results demonstrate the feasibility of DLWIoT, indicating that authorized users can onboard IoT devices with DLWIoT within 2.5-3sec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源