论文标题
过渡金属二甲藻单层中缺陷中心的光学签名
Optical Signatures of Defect Centres in Transition Metal Dichalcogenide Monolayers
论文作者
论文摘要
即使是最优质的2D材料也具有不可忽略的空缺和杂质。了解和量化缺陷如何改变内在属性并使用此知识来生成功能至关重要。可以通过采用多体扰动理论获得缺陷的过渡金属二核苷的光吸收光谱来解决这一挑战。在此基本未报告的金属空缺中,与辣椒剂空位相比,在很大程度上未报告的偏光式出口集,在亚光谱间隙区域引入了局部激子,其波函数和光谱使它们成为量子质量的良好候选者。尽管与替代缺陷有很强的相互作用,但由于整个光学间隙区域仍然可用,因此保留了自旋纹理和原始激子能量,从而在光学探测器中实现了移植和图案。在两种情况下都可以看到A和B激子之间激素重量的重新分布,并且可能允许对缺陷浓度进行定量。这项工作建立了激子特征,以表征2D材料中的缺陷,并将职位空缺作为量子计算的量子候选者。
Even the best quality 2D materials have non-negligible concentrations of vacancies and impurities. It is critical to understand and quantify how defects change intrinsic properties, and use this knowledge to generate functionality. This challenge can be addressed by employing many-body perturbation theory to obtain the optical absorption spectra of defected transition metal dichalcogenides. Herein metal vacancies, which are largely unreported, show a larger set of polarized exitons than chalcogenide vacancies, introducing localized excitons in the sub-optical-gap region, whose wave functions and spectra make them good candidates as quantum emitters. Despite the strong interaction with substitutional defects, the spin texture and pristine exciton energies are preserved, enabling grafting and patterning in optical detectors, as the full optical-gap region remains available. A redistribution of excitonic weight between the A and B excitons is visible in both cases and may allow the quantification of the defect concentration. This work establishes excitonic signatures to characterize defects in 2D materials and highlights vacancies as qubit candidates for quantum computing.