论文标题

同步不情愿机器的多目标自由形状优化

Multi-objective free-form shape optimization of a synchronous reluctance machine

论文作者

Gangl, Peter, Köthe, Stefan, Mellak, Christiane, Cesarano, Alessio, Mütze, Annette

论文摘要

本文介绍了在X射线管中使用的同步不情愿机的设计优化,该试管的目标是通过基于梯度的自由式形状优化来最大化扭矩。提出的方法基于形状衍生物的数学概念,并允许获得新的电动机设计,而无需引入几何参数化。我们通过通过随机优化算法将结果与JMAG中参数几何优化进行比较来验证我们的结果。尽管所获得的设计的形状相似,但基于梯度的算法使用的计算时间在几分钟内,与随机优化算法进行的几个小时相比。最后,我们显示了自由形式形状优化算法的扩展,并显示了多个目标函数的情况,并说明了一种获得近似帕累托正面的方法。

This paper deals with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque, by means of gradient-based free-form shape optimization. The presented approach is based on the mathematical concept of shape derivatives and allows to obtain new motor designs without the need to introduce a geometric parametrization. We validate our results by comparing them to a parametric geometry optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of similar shape, the computational time used by the gradient-based algorithm is in the order of minutes, compared to several hours taken by the stochastic optimization algorithm. Finally, we show an extension of the free-form shape optimization algorithm to the case of multiple objective functions and illustrate a way to obtain an approximate Pareto front.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源