论文标题
Carleman估计值在任意维度中的半级时段扩散方程的逆问题
Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates
论文作者
论文摘要
我们考虑在任意维度中的半阶时间分数扩散方程,并研究确定源项或在某些其他假设下任意固定时间从空间数据中确定源项或扩散系数的逆问题。我们在逆问题中建立了Lipschitz类型的稳定性估计,并且证明是基于Bukhgeim-Klibanov方法,使用Carleman估计值。
We consider a half-order time-fractional diffusion equation in an arbitrary dimension and investigate inverse problems of determining the source term or the diffusion coefficient from spatial data at an arbitrarily fixed time under some additional assumptions. We establish the stability estimate of Lipschitz type in the inverse problems and the proofs are based on the Bukhgeim-Klibanov method by using Carleman estimates.