论文标题

通过仪器变量进行的平均因果效应估计:无同步的异质性假设

Average causal effect estimation via instrumental variables: the no simultaneous heterogeneity assumption

论文作者

Hartwig, F. P., Wang, L., Smith, G. Davey, Davies, N. M.

论文摘要

背景:可以使用仪器变量(IVS)来提供证据表明治疗X是否对结果Y具有因果影响。即使仪器Z满足了相关性,独立性和排除限制的三个核心IV假设,也需要进一步的假设来确定对Y的平均因果效应(ACE)对y的平均效应(ACE)对y的平均效应。 Z与X的关联中的同质性;并且没有效果修改(NEM)。方法:我们描述了没有同时的异质性(NOSH)假设,这需要X-Y因果效应的异质性平均与Z-X关联中Z和异质性无关(即与不相关)。例如,如果没有X-Y效应和Z-X关联的常见修饰符,并且X-Y效应是加性线性的。我们使用模拟说明了NOSH,并通过重新验证选定的已发表研究。结果:当NOSH成立时,瓦尔德估计等于王牌,即使同质性假设和NEM都违反了 - 因此,我们证明是特殊的案例,因此违反了 - 更强大)。结论:NOSH足以使用IV识别ACE。由于NOSH比ACE识别的现有假设弱,因此这样做可能比以前预期的更合理。

Background: Instrumental variables (IVs) can be used to provide evidence as to whether a treatment X has a causal effect on an outcome Y. Even if the instrument Z satisfies the three core IV assumptions of relevance, independence and the exclusion restriction, further assumptions are required to identify the average causal effect (ACE) of X on Y. Sufficient assumptions for this include: homogeneity in the causal effect of X on Y; homogeneity in the association of Z with X; and no effect modification (NEM). Methods: We describe the NO Simultaneous Heterogeneity (NOSH) assumption, which requires the heterogeneity in the X-Y causal effect to be mean independent of (i.e., uncorrelated with) both Z and heterogeneity in the Z-X association. This happens, for example, if there are no common modifiers of the X-Y effect and the Z-X association, and the X-Y effect is additive linear. We illustrate NOSH using simulations and by re-examining selected published studies. Results: When NOSH holds, the Wald estimand equals the ACE even if both homogeneity assumptions and NEM (which we demonstrate to be special cases of - and therefore stronger than - NOSH) are violated. Conclusions: NOSH is sufficient for identifying the ACE using IVs. Since NOSH is weaker than existing assumptions for ACE identification, doing so may be more plausible than previously anticipated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源