论文标题
在可整合量子重力中的量子决定因素上
On quantum determinants in integrable quantum gravity
论文作者
论文摘要
爱因斯坦 - 罗森河具有两个极化的波是真空爱因斯坦方程的圆柱体对称解。在这种情况下,爱因斯坦方程将减少到可集成的系统。 1971年,Geroch表明,该系统接收了一个无限二维的对称转换组,称为Geroch群。该系统的相空间可以通过光谱参数的矩阵值函数(称为单片矩阵)进行参数化。后者将riemann-hilbert分解为一对过渡矩阵,即光谱参数的基质值函数,因此其中一个在上半平面中是全态的,另一个是下半平面的全体形态。经典的Geroch组通过构造保留了过渡和单肌矩阵的决定因素。 Korotkin和Samtleben于1997年提出了由Einstein-Rosen系统过渡矩阵产生的二次泊松代数的代数量化。Paternain,Perasa和Reisenberger最近提出了GEROCH组的量化,可以将Geroch组量化为量子的量子量表,这可以被视为量子量表的对称性。他们表明,涉及量子单层矩阵的换向关系通过量子Geroch组的作用保存。在目前的论文中,我们介绍了量子单构基质决定因素的概念。我们得出一个分解公式,该公式表达了单一矩阵的量子决定因素,作为过渡矩阵的量子决定因素的乘积。量子Geroch基团的作用从单组矩阵产生的亚位bra扩展到可观测值的完整代数。该扩展用于证明量子单构基质的量子决定因素在量子Geroch基团的作用下是不变的。
Einstein-Rosen waves with two polarizations are cylindrically symmetric solutions to vacuum Einstein equations. Einstein equations in this case reduce to an integrable system. In 1971, Geroch has shown that this system admits an infinite-dimensional group of symmetry transformations known as the Geroch group. The phase space of this system can be parametrized by a matrix-valued function of spectral parameter, called monodromy matrix. The latter admits the Riemann-Hilbert factorization into a pair of transition matrices, i.e. matrix-valued functions of spectral parameter such that one of them is holomorphic in the upper half-plane, and the other is holomorphic in the lower half-plane. The classical Geroch group preserves the determinants of transition and monodromy matrices by construction. The algebraic quantization of the quadratic Poisson algebra generated by transition matrices of Einstein-Rosen system was proposed by Korotkin and Samtleben in 1997. Paternain, Perasa and Reisenberger have recently suggested a quantization of the Geroch group, which can be considered as a symmetry of the quantum algebra of observables. They have shown that commutation relations involving quantum monodromy matrices are preserved by the action of the quantum Geroch group. In present paper we introduce the notion of the determinant of the quantum monodromy matrix. We derive a factorization formula expressing the quantum determinant of the monodromy matrix as a product of the quantum determinants of the transition matrices. The action of the quantum Geroch group is extended from the subalgebra generated by the monodromy matrix onto the full algebra of observables. This extension is used to prove that the quantum determinant of the quantum monodromy matrix is invariant under the action of quantum Geroch group.