论文标题

$ k $ -minkowski的$ u(1)$量规理论

$k$-Minkowski-deformation of $U(1)$ gauge theory

论文作者

Kupriyanov, V. G., Kurkov, M., Vitale, P.

论文摘要

我们构建了U(1)量规理论的非交换性Kappa-Minkowski变形,遵循一种通用方法,最近在JHEP 2008(2020)041中提出。我们获得了一个确切的(非交换性参数)表达的确切(所有订单)表达式,用于在这些变形的野外强度下,在这些变形的场强下,这些变形的场强,这是这些转换的变形。相应的阳米尔斯拉格朗日是量规协变量,并在交换性限制中复制了麦克斯韦·拉格朗日。动作功能的规格不变性需要一项非平凡的整合度量,在交换性限制下,这并不能减少到琐碎的限制。我们讨论了这种非平整交换限制的物理含义,将其与未构成理论的非平凡时空曲率有关。此外,我们提出了一个重新缩放的Kappa-Minkowski非交流结构,该结构具有标准的平整交换限制。

We construct a non-commutative kappa-Minkowski deformation of U(1) gauge theory, following a general approach, recently proposed in JHEP 2008 (2020) 041. We obtain an exact (all orders in the non-commutativity parameter) expression for both the deformed gauge transformations and the deformed field strength, which is covariant under these transformations. The corresponding Yang-Mills Lagrangian is gauge covariant and reproduces the Maxwell Lagrangian in the commutative limit. Gauge invariance of the action functional requires a non-trivial integration measure which, in the commutative limit, does not reduce to the trivial one. We discuss the physical meaning of such a nontrivial commutative limit, relating it to a nontrivial space-time curvature of the undeformed theory. Moreover, we propose a rescaled kappa-Minkowski non-commutative structure, which exhibits a standard flat commutative limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源