论文标题

(2+1)d $ ϕ^4 $ - 来自哈密顿截断的理论的非扰动动力

Nonperturbative dynamics of (2+1)d $ϕ^4$-theory from Hamiltonian truncation

论文作者

Anand, Nikhil, Katz, Emanuel, Khandker, Zuhair U., Walters, Matthew T.

论文摘要

我们使用LightCone Condomal截断(LCT)(Hamiltonian截断的一种版本)来研究2+1个维度中$ ϕ^4 $ - 理论的非扰动,实时动力学。该理论具有需要调节的紫外线差异。我们回顾一下,在具有总能量截止的哈密顿框架中,重新归一定化必然是\ emph {state依赖性},并且不能用标准的本地操作员对抗来取消紫外线灵敏度。为了克服这个问题,我们提出了用于构建(2+1)d $ ϕ^4 $的适当状态依赖性对抗的处方。然后,我们将LCT与此反式处方一起研究$ ϕ^4 $ - 理论,重点关注$ \ Mathbb {z} _2 $ symmetry-symetry-symetry-wearserving阶段。具体而言,我们计算频谱是耦合的函数,并在(方案依赖性)临界耦合下演示了质量间隙的闭合。我们还计算了Lorentz-Invariant的两点函数,无论是在通用的强耦合和临界点附近,我们都证明了IR普遍性和消失应力张量的痕迹。

We use Lightcone Conformal Truncation (LCT) -- a version of Hamiltonian truncation -- to study the nonperturbative, real-time dynamics of $ϕ^4$-theory in 2+1 dimensions. This theory has UV divergences that need to be regulated. We review how, in a Hamiltonian framework with a total energy cutoff, renormalization is necessarily \emph{state-dependent}, and UV sensitivity cannot be canceled with standard local operator counterterms. To overcome this problem, we present a prescription for constructing the appropriate state-dependent counterterms for (2+1)d $ϕ^4$-theory in lightcone quantization. We then use LCT with this counterterm prescription to study $ϕ^4$-theory, focusing on the $\mathbb{Z}_2$ symmetry-preserving phase. Specifically, we compute the spectrum as a function of the coupling and demonstrate the closing of the mass gap at a (scheme-dependent) critical coupling. We also compute Lorentz-invariant two-point functions, both at generic strong coupling and near the critical point, where we demonstrate IR universality and the vanishing of the trace of the stress tensor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源