论文标题

航空影像中的多个行人和车辆跟踪:一项全面研究

Multiple Pedestrians and Vehicles Tracking in Aerial Imagery: A Comprehensive Study

论文作者

Azimi, Seyed Majid, Kraus, Maximilian, Bahmanyar, Reza, Reinartz, Peter

论文摘要

在本文中,通过对许多基于传统和深度学习的单对象跟踪方法进行密集评估,我们通过高分辨率航空影像中的多培训和车辆跟踪中的各种挑战。我们还描述了我们提出的基于深度学习的多对象跟踪方法AerialMptNet,该方法使用暹罗神经网络,长期的短期记忆以及图形卷积神经网络模块融合外观,时间和图形信息,以进行更准确,更稳定的跟踪。此外,我们研究了挤压层和在线硬采矿对AerialMptNet性能的影响。据我们所知,我们是第一个将这两个用于基于回归的多对象跟踪的人。此外,我们研究并比较了L1和Huber损失函数。在我们的实验中,我们在三个航空多对象跟踪数据集上广泛评估了AerialMptNet,即AirialMpt和Kit AIS行人和车辆数据集。定性和定量结果表明,AerialMptNet优于行人数据集的所有先前方法,并为车辆数据集获得了竞争成果。此外,长期的短期记忆和图形卷积神经网络模块可增强跟踪性能。此外,在某些情况下,使用挤压和兴奋和在线硬示例采矿对其他情况有所帮助,同时降低结果。此外,根据结果,在大多数情况下,L1在Huber损失方面产生了更好的结果。提出的结果为空中多目标跟踪领域的挑战和机遇提供了深刻的见解,为未来的研究铺平了道路。

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for a more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first in using these two for a regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源