论文标题

对抗图像取证中的机器学习技术的调查

A Survey of Machine Learning Techniques in Adversarial Image Forensics

论文作者

Nowroozi, Ehsan, Dehghantanha, Ali, Parizi, Reza M., Choo, Kim-Kwang Raymond

论文摘要

图像法医在两种刑事调查(例如,假冒图像传播以传播有关特定种族群体的种族仇恨或虚假叙述)和民事诉讼(例如诽谤)中都起着至关重要的作用。机器学习方法越来越多地用于图像取证。但是,还有许多与基于机器学习的方法相关的局限性和漏洞,例如如何检测对抗(图像)示例,具有现实世界后果(例如,不可接受的证据或不法信念)。因此,以图像取证为重点,本文调查可用于增强基于机器学习的二进制操纵检测器在各种对抗场景中的鲁棒性的技术。

Image forensic plays a crucial role in both criminal investigations (e.g., dissemination of fake images to spread racial hate or false narratives about specific ethnicity groups) and civil litigation (e.g., defamation). Increasingly, machine learning approaches are also utilized in image forensics. However, there are also a number of limitations and vulnerabilities associated with machine learning-based approaches, for example how to detect adversarial (image) examples, with real-world consequences (e.g., inadmissible evidence, or wrongful conviction). Therefore, with a focus on image forensics, this paper surveys techniques that can be used to enhance the robustness of machine learning-based binary manipulation detectors in various adversarial scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源