论文标题
Kohn-Sham密度功能理论的解离极限
Dissociation limit in Kohn-Sham density functional theory
论文作者
论文摘要
我们考虑了Kohn-Sham密度理论设置中$ X_2 $的分子的分离限制,其中$ x $可以是$ n $ electron的任何元素。我们证明,当系统中的两个原子被无限地撕裂时,系统的能量与$ \ min \ limits_ {α\ in [0,n]} \ big(i^{x}_α + i^{x} + i^{x} _ {x} _ {2n-α} \ big)$ i^$ i^$ i^$ i^= rate at us at $ i^^^=周围的电子。根据交易所的“强度”,此最小值可能不等于对称分配$ 2I^{x} _ {n} $。我们以数字显示,对于$ h_2 $ -molecule和Dirac Exchange,这给出了预期的结果,其能量是H原子$ 2 I^{h} _1 $的两倍。
We consider the dissociation limit for molecules of the type $X_2$ in the Kohn-Sham density functional theory setting, where $X$ can be any element with $N$ electrons. We prove that when the two atoms in the system are torn infinitely far apart, the energy of the system convergences to $\min \limits_{α\in [0,N]} \big( I^{X}_α + I^{X}_{2N-α} \big)$, where $I^{X}_α$ denotes the energy of the atom with $α$ electrons surrounding it. Depending on the "strength" of the exchange this minimum might not be equal to the symmetric splitting $2I^{X}_{N}$. We show numerically that for the $H_2$-molecule with Dirac exchange this gives the expected result of twice the energy of a H-atom $2 I^{H}_1$.