论文标题
加权(B,C)逆的特征
Characterizations of weighted (b,c) inverse
论文作者
论文摘要
最近引入了加权$(b,c)$的概念 - 最近引入了一个元素,最近[comm。代数,48(4)(2020):1423-1438]。在本文中,我们通过建立对这种逆的一些特征及其与其他$(v,w)$ - 加权$(b,c)$ inverses的关系进一步详细阐述了这一理论。我们为存在混合$(v,w)$ - 加权$(b,c)$(b,c)$(v,w)$(v,w)$(v,w)$ - 加权$(b,c)$ - 与环中的元素成反比的混合$(v,c)$(b,c)$(b,c)$(v,v,w)$(v,w)$(v,w)$(v,w)$(v,v,w)$ - 介绍了一些必要的条件。除此之外,我们还探索了一些足够的条件,以实现an灭$(v,w)$ - 加权$(b,c)$ - 倒置的反向订单法律。
The notion of weighted $(b,c)$-inverse of an element in rings were introduced, very recently [Comm. Algebra, 48 (4) (2020): 1423-1438]. In this paper, we further elaborate on this theory by establishing a few characterizations of this inverse and their relationships with other $(v, w)$-weighted $(b,c)$-inverses. We introduce some necessary and sufficient conditions for the existence of the hybrid $(v, w)$-weighted $(b,c)$-inverse and annihilator $(v, w)$-weighted $(b,c)$-inverse of elements in rings. In addition to this, we explore a few sufficient conditions for the reverse-order law of the annihilator $(v, w)$-weighted $(b,c)$-inverses.