论文标题
具有有限状态和动作空间的平均野外游戏的基本固定平衡
Essential Stationary Equilibria of Mean Field Games with Finite State and Action Space
论文作者
论文摘要
平均现场游戏允许用玩家,明确的互动和异质状态来描述动态游戏的可拖动模型。因此,这些模型对社会经济应用引起了极大的兴趣。这些模型的特定类别是具有有限状态和动作空间的游戏,最近在Neumann(2020a)中,已经获得了所有固定平衡的半明确表示。在本文中,我们研究了这些固定平衡是否在模型扰动上是稳定的。我们证明,只有必要平衡的所有游戏集是残留的,并获得了基本固定平衡的两个表征结果。
Mean field games allow to describe tractable models of dynamic games with a continuum of players, explicit interaction and heterogeneous states. Thus, these models are of great interest for socio-economic applications. A particular class of these models are games with finite state and action space, for which recently in Neumann (2020a) a semi-explicit representation of all stationary equilibria has been obtained. In this paper we investigate whether these stationary equilibria are stable against model perturbations. We prove that the set of all games with only essential equilibria is residual and obtain two characterization results for essential stationary equilibria.