论文标题

低光图像增强的两阶段无监督方法

A Two-stage Unsupervised Approach for Low light Image Enhancement

论文作者

Hu, Junjie, Guo, Xiyue, Chen, Junfeng, Liang, Guanqi, Deng, Fuqin, Lam, Tin lun

论文摘要

由于基于视觉的感知方法通常是基于正常的灯光假设的,因此将其部署到弱光环境中时将存在严重的安全问题。最近,已经提出了基于深度学习的方法来通过惩罚低光和正常光图像的像素损失来增强弱光图像。但是,其中大多数遇到了以下问题:1)需要成对的弱光和正常光图像进行训练,2)黑暗图像的性能差,3)噪声的放大。为了减轻这些问题,在本文中,我们提出了一种两阶段的无监督方法,将低光图像增强分解为重力和后填充问题。在第一阶段,我们以传统的基于视网膜方法的方法预先预达低光图像。在第二阶段,我们使用通过对抗培训学习的改进网络来进一步改善图像质量。实验结果表明,我们的方法在四个基准数据集上优于先前的方法。此外,我们表明我们的方法可以显着改善特征点匹配和同时定位和在弱光条件下的映射。

As vision based perception methods are usually built on the normal light assumption, there will be a serious safety issue when deploying them into low light environments. Recently, deep learning based methods have been proposed to enhance low light images by penalizing the pixel-wise loss of low light and normal light images. However, most of them suffer from the following problems: 1) the need of pairs of low light and normal light images for training, 2) the poor performance for dark images, 3) the amplification of noise. To alleviate these problems, in this paper, we propose a two-stage unsupervised method that decomposes the low light image enhancement into a pre-enhancement and a post-refinement problem. In the first stage, we pre-enhance a low light image with a conventional Retinex based method. In the second stage, we use a refinement network learned with adversarial training for further improvement of the image quality. The experimental results show that our method outperforms previous methods on four benchmark datasets. In addition, we show that our method can significantly improve feature points matching and simultaneous localization and mapping in low light conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源