论文标题

磁盘在RE = 50,000处的湍流唤醒的光谱POD分析

Spectral POD analysis of the turbulent wake of a disk at Re = 50, 000

论文作者

Nidhan, Sheel, Chongsiripinyo, Karu, Schmidt, Oliver T., Sarkar, Sutanu

论文摘要

磁盘在磁盘上以中等高的雷诺数($ \ rey $)为$ 50,000 $的连贯结构使用频谱适当的正交分解(SPOD)检查,该分解(SPOD)考虑了数值数据库中的所有三个速度组件。给定的流式($ x $)位置的SPOD特征值是Azimuthal WaveNumber($ M $),频率($ \ str $)和SPOD索引($ n $)的功能。到$ x/d = 10 $,两种特定模式主导着波动能量:(i)具有$ m = 1,\ str = 0.135,n = 1 $的涡流脱落(VS)模式,以及(ii)双螺旋(DH)模式,$ M = 2,\ str \ str \ str \ rightarrow 0,n = 1 $。 VS模式在近唤醒中比DH模式更有能力,但是在遥远的唤醒中,DH模式是主导的。当用局部湍流速度和长度尺度缩放时,DH模式在特征值和本征模中显示自相似性,而VS模式为全局模式,并未表现出严格的自相似性。模式$ m = 0 $,3和4,尽管亚较量,但也对波动能量也有很大的净贡献,并评估了其特征性。 TKE和REYNOLDS剪切应力的重建,$ \ langle u'_ {x} u'_ {r} \ rangle $,通过改变$(m,\ str,n)$组合来评估。较高的SPOD模式对TKE产生了重大贡献,尤其是在中心线附近。相比之下,$ \ langle u'_ {x} u'_ {r} \ rangle $的重建需要更少的模式:$ | m | \ leq 4 $,$ | \ str | \ leq 1 $和$ n \ leq 3 $。在Azimuthal模式中,$ M = 1 $和$ 2 $是TKE和$ \ langle U'_ {X} u'_ {R} \ rangle $的主要贡献者。 $ m = 1 $捕获了中心线附近的剪切压力配置文件的斜率,而$ m = 2 $对于捕获$ \ langle u'_ {x} u'_ _ {r} \ rangle $在其峰值和峰附近很重要。 SPOD还在磁盘附近进行,以描述向主要贡献者的模态转变。

The coherent structures in the turbulent wake of a disk at a moderately high Reynolds number ($\Rey$) of $50,000$ are examined using spectral proper orthogonal decomposition (SPOD) which considers all three velocity components in a numerical database. The SPOD eigenvalues at a given streamwise ($x$) location are functions of azimuthal wavenumber ($m$), frequency ($\Str$), and SPOD index ($n$). By $x/D =10$, two specific modes dominate the fluctuation energy: (i) the vortex shedding (VS) mode with $m=1, \Str =0.135, n=1$, and (ii) the double helix (DH) mode with $m=2, \Str \rightarrow 0, n=1$. The VS mode is more energetic than the DH mode in the near wake but, in the far wake, it is the DH mode which is dominant. The DH mode, when scaled with local turbulent velocity and length scales, shows self-similarity in eigenvalues and eigenmodes while the VS mode, which is a global mode, does not exhibit strict self-similarity. Modes $m = 0$, 3 and 4, although subdominant, also make a significant net contribution to the fluctuation energy, and their eigenspectra are evaluated. The reconstruction of TKE and Reynolds shear stress, $\langle u'_{x} u'_{r} \rangle$, is evaluated by varying $(m,\Str,n)$ combinations. Higher SPOD modes contribute significantly to the TKE, especially near the centerline. In contrast, reconstruction of $\langle u'_{x}u'_{r}\rangle $ requires far fewer modes: $|m| \leq 4 $, $|\Str| \leq 1$ and $n \leq 3$. Among azimuthal modes, $m=1$ and $2$ are the leading contributors to both TKE and $\langle u'_{x}u'_{r} \rangle $. While $m=1$ captures the slope of the shear-stress profile near the centerline, $m=2$ is important to capture $\langle u'_{x}u'_{r} \rangle $ at and near its peak. SPOD is also performed in the vicinity of the disk to describe the modal transition to the principal contributors in the wake.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源