论文标题

通过Boltzmann-BGK配方,用于解决前进和逆流问题的物理知识神经网络

Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation

论文作者

Lou, Qin, Meng, Xuhui, Karniadakis, George Em

论文摘要

在这项研究中,我们采用物理信息的神经网络(PINN)通过Boltzmann-BGK配方(PINN-BGK)来解决前进和反问题,使Pinns能够模拟连续性和稀有制度中的流量。特别是,PINN-BGK由三个子网络组成,即第一个用于近似于平衡分布函数的子网络,第二个用于近似于非平衡分布函数,而第三个用于编码Boltzmann-BGK方程以及相应的边界/初始条件。通过最小化管理方程的残差以及预测和提供的边界/初始条件之间的不匹配,我们可以近似连续和稀有流的玻璃体BGK方程。对于正向问题,PINN-BGK用于在给定边界/初始条件的情况下解决各种基准流量,例如Kovasznay流量,Taylor-Green流量,空腔流量和Knudsen数量的微型COUETTE流量最多5。对于相反的问题,我们专注于难以获得的准确边界条件的稀有流。我们采用PINN-BGK来推断整个计算域中的流场,因为在未知边界条件下的速度上的内部散射测量数量有限。二维微轴和微腔流的结果范围从0.1到10,表明PINN-BGK可以良好的精度推断整个域中的速度场。最后,我们还提供了一些有关使用转移学习来加速训练过程的结果。具体来说,与我们工作中考虑的二维流量问题相比,我们可以获得三维训练过程(例如Adam Plus L-BFGS-B)的三倍加速。

In this study, we employ physics-informed neural networks (PINNs) to solve forward and inverse problems via the Boltzmann-BGK formulation (PINN-BGK), enabling PINNs to model flows in both the continuum and rarefied regimes. In particular, the PINN-BGK is composed of three sub-networks, i.e., the first for approximating the equilibrium distribution function, the second for approximating the non-equilibrium distribution function, and the third one for encoding the Boltzmann-BGK equation as well as the corresponding boundary/initial conditions. By minimizing the residuals of the governing equations and the mismatch between the predicted and provided boundary/initial conditions, we can approximate the Boltzmann-BGK equation for both continuous and rarefied flows. For forward problems, the PINN-BGK is utilized to solve various benchmark flows given boundary/initial conditions, e.g., Kovasznay flow, Taylor-Green flow, cavity flow, and micro Couette flow for Knudsen number up to 5. For inverse problems, we focus on rarefied flows in which accurate boundary conditions are difficult to obtain. We employ the PINN-BGK to infer the flow field in the entire computational domain given a limited number of interior scattered measurements on the velocity with unknown boundary conditions. Results for the two-dimensional micro Couette and micro cavity flows with Knudsen numbers ranging from 0.1 to 10 indicate that the PINN-BGK can infer the velocity field in the entire domain with good accuracy. Finally, we also present some results on using transfer learning to accelerate the training process. Specifically, we can obtain a three-fold speedup compared to the standard training process (e.g., Adam plus L-BFGS-B) for the two-dimensional flow problems considered in our work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源