论文标题
分子在星际冰上的高水平初始结合能分布:氟化氢
High level ab initio binding energy distribution of molecules on interstellar ices: Hydrogen fluoride
论文作者
论文摘要
分子对天体物理相关的冰的结合能的了解可以帮助获得解吸速率的估计,即分子在表面上停留时间。这代表了天体化学模型的重要参数,这对于确定在尘土晶粒上形成的复杂有机分子的化学命运至关重要,并在星际培养基的最密集区域观察到。在这项工作中,我们提出了一种新的强大程序,以基于\ textIt {ab initio}分子动力学和密度功能理论研究原子和分子与星际冰的相互作用,并通过高级\ textit {abioio}方法在CCSD(t)/CBS级别上验证。我们已将此过程应用于氟化氢(HF),这是星系分子含量的有前途的示踪剂。 In total we found 13 unique equilibrium structures of HF binding to small water clusters of up to 4 molecules, with binding energies ranging from 1208 to 7162 K. We computed a 22-molecules model of amorphous solid water (ASW) surface using \textit{ab initio} molecular dynamics simulations and carried out a systematic analysis of the binding sites of HF, in terms of binding模式和结合能。考虑到10种不同的水簇,我们发现了一个结合能量分布,平均值为$ 5313 \ pm74 $ k,分散$ 921 \ pm115 $k。最后,通过对称的透明环境效果,逐步衡量了效果,从而逐渐研究了22个水分子对结合能量的静电场对结合能量的影响。结果表明,HF与ASW的静电相互作用的程度在很大程度上取决于结合位点的性质。我们预计这项工作将为星际表面上分子的结合能量分布数据库的系统开发提供坚实的基础。
The knowledge of the binding energy of molecules on astrophysically relevant ices can help to obtain an estimate of the desorption rate, i.e. the molecules residence time on the surface. This represents an important parameter for astrochemical models, crucial to determine the chemical fate of complex organic molecules formed on dust grains and observed in the densest regions of the interstellar medium. In this work, we propose a new robust procedure to study the interaction of atoms and molecules with interstellar ices, based on \textit{ab initio} molecular dynamics and density functional theory, validated by high-level \textit{ab initio} methods at a CCSD(T)/CBS level. We have applied this procedure to hydrogen fluoride (HF), a promising tracer of the molecular content of galaxies. In total we found 13 unique equilibrium structures of HF binding to small water clusters of up to 4 molecules, with binding energies ranging from 1208 to 7162 K. We computed a 22-molecules model of amorphous solid water (ASW) surface using \textit{ab initio} molecular dynamics simulations and carried out a systematic analysis of the binding sites of HF, in terms of binding modes and binding energies. Considering 10 different water clusters, we found a binding energy distribution with an average value of $5313\pm74$ K, and a dispersion of $921\pm115$ K. Finally, the effect of the electrostatic field of the 22 water molecules on the binding energies was investigated incrementally by symmetry adapted perturbation theory, in order to gauge the effect of the water environment. The results indicate that the extent of the electrostatic interaction of HF with ASW depends strongly on the properties of the binding site. We expect that this work will provide a solid foundation for a systematic development of a binding energy distribution database of molecules on interstellar surfaces.