论文标题

最终定期单词的拉姆齐(Ramsey)表征

A Ramsey Characterisation of Eventually Periodic Words

论文作者

Ivan, Maria-Romina, Leader, Imre, Zamboni, Luca Q.

论文摘要

一个分解$ x = u_1 u_2 \ cdots $ a onphabet $ x $上的无限单词$ x $称为“单色”,对于有限单词的给定着色$ x^*$ on Alphabet $ x $,如果每个$ u_i $都是相同的颜色。 Wojcik和Zamboni证明了$ x $的单词是周期性的,并且仅当每种有限的颜色的$ x^*$都有$ x $的单色分解。另一方面,从拉姆齐定理(Ramsey's Theorem)遵循的是,对于\ textit {any} word $ x $,对于每种有限的颜色,$ x^*$的每种有限颜色都有一个$ x $具有单色分解的后缀。如果每个单词$ u_ {k_1} u_ {k_2} \ cdots u_ {k_n} $,则分解为$ x = u_1 u_2 \ cdots $称为`super-Onochromatic'我们在本文中的目的是证明$ x $的单词最终是定期定期的。我们的主要工具是Ramsey的结果,即可能具有独立兴趣的交替款项。

A factorisation $x = u_1 u_2 \cdots$ of an infinite word $x$ on alphabet $X$ is called `monochromatic', for a given colouring of the finite words $X^*$ on alphabet $X$, if each $u_i$ is the same colour. Wojcik and Zamboni proved that the word $x$ is periodic if and only if for every finite colouring of $X^*$ there is a monochromatic factorisation of $x$. On the other hand, it follows from Ramsey's theorem that, for \textit{any} word $x$, for every finite colouring of $X^*$ there is a suffix of $x$ having a monochromatic factorisation. A factorisation $x = u_1 u_2 \cdots$ is called `super-monochromatic' if each word $u_{k_1} u_{k_2} \cdots u_{k_n}$, where $k_1 < \cdots < k_n$, is the same colour. Our aim in this paper is to show that a word $x$ is eventually periodic if and only if for every finite colouring of $X^*$ there is a suffix of $x$ having a super-monochromatic factorisation. Our main tool is a Ramsey result about alternating sums that may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源