论文标题
在部分访问的多体系统中驱动增强的量子传感
Driving enhanced quantum sensing in partially accessible many-body systems
论文作者
论文摘要
多体系统的地面批判性是量子增强感应的资源,即Heisenberg Precision限制,只要一个人可以访问整个系统。我们表明,对于部分可访问性,基态旋转块的传感能力将减少到亚森伯格的限制。为了补偿这一点,我们定期驱动哈密顿量,并使用局部稳态进行量子感测。值得注意的是,与基态相比,稳态传感在精确度上显示出显着的增强,甚至可以在低频中达到超级黑质缩放。这种精度增强的起源与Floquet胶质差距的结束有关。与全球可访问性的基态感应相关的能量差距的消失是密切的。该提案是所有可集成模型的一般性,可以在现有的量子设备上实施。
The Ground-state criticality of many-body systems is a resource for quantum-enhanced sensing, namely the Heisenberg precision limit, provided that one has access to the whole system. We show that for partial accessibility, the sensing capabilities of a block of spins in the ground state reduces to the sub-Heisenberg limit. To compensate for this, we drive the hamiltonian periodically and use a local steady-state for quantum sensing. Remarkably, the steady-state sensing shows a significant enhancement in precision compared to the ground state and even achieves super-Heisenberg scaling for low frequencies. The origin of this precision enhancement is related to the closing of the Floquet quasienergy gap. It is in close correspondence with the vanishing of the energy gap at criticality for ground state sensing with global accessibility. The proposal is general to all the integrable models and can be implemented on existing quantum devices.