论文标题

生活在地球观察的物理和机器学习相互作用中

Living in the Physics and Machine Learning Interplay for Earth Observation

论文作者

Camps-Valls, Gustau, Svendsen, Daniel H., Cortés-Andrés, Jordi, Moreno-Martínez, Álvaro, Pérez-Suay, Adrián, Adsuara, Jose, Martín, Irene, Piles, Maria, Muñoz-Marí, Jordi, Martino, Luca

论文摘要

地球科学中的大多数问题旨在对系统进行推断,在这种系统中,准确的预测只是整个问题的一部分。推论意味着理解变量关系,得出了物理上可解释的模型,简单简单且在数学上可以拖延。仅机器学习模型是出色的近似值,但通常不尊重大多数物理原则,例如质量或能源保存,因此一致性和信心受到损害。在本文中,我们描述了该领域的主要挑战,并介绍了几种生活在物理和机器学习相互作用中的方法:用数据编码微分方程,用物理学来限制数据驱动的模型和依赖性约束,改善参数化,模拟物理模型,以及混合数据驱动的数据驱动和基于过程的模型。这是一个集体的长期AI议程,用于制定和应用能够在地球系统中发现知识的算法。

Most problems in Earth sciences aim to do inferences about the system, where accurate predictions are just a tiny part of the whole problem. Inferences mean understanding variables relations, deriving models that are physically interpretable, that are simple parsimonious, and mathematically tractable. Machine learning models alone are excellent approximators, but very often do not respect the most elementary laws of physics, like mass or energy conservation, so consistency and confidence are compromised. In this paper, we describe the main challenges ahead in the field, and introduce several ways to live in the Physics and machine learning interplay: to encode differential equations from data, constrain data-driven models with physics-priors and dependence constraints, improve parameterizations, emulate physical models, and blend data-driven and process-based models. This is a collective long-term AI agenda towards developing and applying algorithms capable of discovering knowledge in the Earth system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源