论文标题
使用墙壁和点对线的最后一段通道的uthasep的不变度量
The invariant measure of PushASEP with a wall and point-to-line last passage percolation
论文作者
论文摘要
我们在晶格上考虑了一个相互作用的粒子系统,涉及在原点存在壁的情况下,涉及推动和阻塞相互作用,称为pushasep。我们表明,该系统的不变度量度在分布与点对线的最后一段渗透时间的向量相等,在随机的几何分布环境中。这两个矢量中最大的坐标在分布方面都等于非挑剔随机行走的历史上的至上。
We consider an interacting particle system on the lattice involving pushing and blocking interactions, called PushASEP, in the presence of a wall at the origin. We show that the invariant measure of this system is equal in distribution to a vector of point-to-line last passage percolation times in a random geometrically distributed environment. The largest co-ordinates in both of these vectors are equal in distribution to the all-time supremum of a non-colliding random walk.