论文标题

Espaces de Berkovich Globaux:catégorie,拓扑,同事

Espaces de Berkovich globaux : catégorie, topologie, cohomologie

论文作者

Lemanissier, Thibaud, Poineau, Jérôme

论文摘要

本文为全球伯科维奇空间理论的基础做出了贡献,也就是说,伯科维奇在Banach环上的空间具有$ \ Mathbf {Z} $,数字字段的整数,离散的估值圈,混合领域等的整数,我们将重点放在三个没有被调查过的主要学科:topology,topology,pologigy,pologigy,pologity上。关于该类别,我们的主要任务是定义一个行为良好的形态主义概念。然后,我们可以使用合适的设置来执行和研究各种结构:产品,纤维产品,标量扩展,方案的分析等。在拓扑方面,我们表明全球Berkovich空间是局部与路径连接的。主要成分是对Noether归一化引理的类似物,我们在仔细研究有限的形态后获得了。最后,我们证明,任意维度的开放和封闭的圆盘没有更高的相干协同学。这是一个深刻的结果,它使我们能够启动一个全球过度融合的crodinoid空间理论,在该空间中,Tate和Kiehl定理的类似物。由于我们的消失陈述,我们获得了某些融合算术功率序列(具有积分系数和积分系数的功率序列和融合的正复杂半径)的几何证据,从而从单个变量的情况下从单个变量中概述了D. harbater的定理。

This text contributes to the foundations of the theory of global Berkovich spaces, that is to say Berkovich spaces over Banach rings with nice properties such as $\mathbf{Z}$, rings of integers of number fields, discrete valuation rings, hybrid fields, etc. We focus on three main themes that had not been investigated so far: category, topology and cohomology. As regards the category, our main task is to define a well-behaved notion of morphism. We then have the suitable setting at our disposal to carry out and study various constructions: products, fiber products, extensions of scalars, analytification of schemes, etc. On the topological side, we show that global Berkovich spaces are locally path-connected. The main ingredient is an analogue of Noether's normalization lemma, that we obtain after a careful study of finite morphisms. Finally, we prove that open and closed discs of arbitrary dimension have no higher coherent cohomology. This is a deep result, which allows us to initiate a theory of global overconvergent affinoid spaces, where the analogues of Tate's and Kiehl's theorems hold. As a consequence of our vanishing statements, we obtain a geometric proof of a Noetherianity result for certain rings of convergent arithmetic power series (power series with integral coefficients and positive complex radii of convergence), generalizing a theorem of D. Harbater from the case of a single variable to arbitrary many.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源