论文标题

III型太阳能无线电爆发源的次秒时间演变在基本频率和谐波频率下

Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies

论文作者

Chen, Xingyao, Kontar, Eduard P., Chrysaphi, Nicolina, Jeffrey, Natasha L. S., Gordovskyy, Mykola, Yan, Yihua, Tan, Baolin

论文摘要

天文射电望远镜的最新发展为在秒时标准的太阳能爆发的成像和光谱方面开辟了新的机会。狭窄频带中的成像揭示了不适合III型太阳能无线电爆发的标准图片的位置和源尺寸的时间变化,并且需要更好地了解无线电波传输。在本文中,我们利用了3D蒙特卡洛射线追踪模拟,这些模拟解释了不均匀的太阳能色彩的各向异性密度湍流,以定量解释基本(接近等离子频率)和谐波(双)等离子体的图像动力学,并在\ sim 32〜mhz上观察到。将模拟与观察结果进行比较,我们发现来自瞬时发射点源的各向异性散射可以解释观察到的时间曲线,质心位置和III型无线电爆发基本组件的源尺寸(生成F_ {pe}} \ of 32〜MHz)。当垂直于各向异性密度湍流的波载体的比率与垂直的平行分量的比率约为0.25时。谐波发射源以相同的频率观察到(\ sim 32〜MHz,但在f_ {pe} \大约16〜MHz的位置生成的尺寸与基本发射产生的大小相当,但表现出较慢的时间进化。无线电波传播的仿真可以定量解释在基本和谐波排放的次秒时尺度上明显的源量和位置的变化,并可以用作上层电孔中血浆湍流的诊断工具。

Recent developments in astronomical radio telescopes opened new opportunities in imaging and spectroscopy of solar radio bursts at sub-second timescales. Imaging in narrow frequency bands has revealed temporal variations in the positions and source sizes that do not fit into the standard picture of type III solar radio bursts, and require a better understanding of radio-wave transport. In this paper, we utilise 3D Monte Carlo ray-tracing simulations that account for the anisotropic density turbulence in the inhomogeneous solar corona to quantitatively explain the image dynamics at the fundamental (near plasma frequency) and harmonic (double) plasma emissions observed at \sim 32~MHz. Comparing the simulations with observations, we find that anisotropic scattering from an instantaneous emission point source can account for the observed time profiles, centroid locations, and source sizes of the fundamental component of type III radio bursts (generated where f_{pe} \approx 32~MHz). The best agreement with observations is achieved when the ratio of the perpendicular to the parallel component of the wave vector of anisotropic density turbulence is around 0.25. Harmonic emission sources observed at the same frequency (\sim 32~MHz, but generated where f_{pe} \approx 16~MHz) have apparent sizes comparable to those produced by the fundamental emission, but demonstrate a much slower temporal evolution. The simulations of radio-wave propagation make it possible to quantitatively explain the variations of apparent source sizes and positions at sub-second time-scales both for the fundamental and harmonic emissions, and can be used as a diagnostic tool for the plasma turbulence in the upper corona.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源