论文标题

Dehide:基于深度学习的混合模型,用于使用区块链检测假新闻

DeHiDe: Deep Learning-based Hybrid Model to Detect Fake News using Blockchain

论文作者

Agrawal, Prashansa, Anjana, Parwat Singh, Peri, Sathya

论文摘要

误导信息,谎言,宣传和虚假事实的传播激增(通常称为假新闻)提出了有关社交媒体在当今快速发展的民主社会中的影响的问题。假新闻的广泛和快速传播在许多方面使我们造成了我们的损失。例如,个人或社会成本通过妨碍选举的完整性,通过影响股票市场的重大经济损失或增加国家安全风险来造成巨大的经济损失。克服传统集中式系统中假新闻问题的传播是一项挑战。但是,区块链 - 通过提供透明,不变和可验证的交易记录来确保数据出处,真实性和可追溯性的分布式分散技术可以帮助检测和争夺虚假新闻。本文提出了一种新型的混合模型Dehide:基于深度学习的混合模型,以使用区块链检测假新闻。 Dehide是一个基于区块链的框架,可通过滤除假新闻来进行合法新闻共享。它结合了区块链的好处和智能深度学习模型,以增强稳健性和准确性,以打击假新闻的障碍。它还将提出的方法与现有的最新方法进行了比较。在服务,功能和性能方面,Dehide有望超越最先进的方法。

The surge in the spread of misleading information, lies, propaganda, and false facts, frequently known as fake news, raised questions concerning social media's influence in today's fast-moving democratic society. The widespread and rapid dissemination of fake news cost us in many ways. For example, individual or societal costs by hampering elections integrity, significant economic losses by impacting stock markets, or increases the risk to national security. It is challenging to overcome the spreading of fake news problems in traditional centralized systems. However, Blockchain-- a distributed decentralized technology that ensures data provenance, authenticity, and traceability by providing a transparent, immutable, and verifiable transaction records can help in detecting and contending fake news. This paper proposes a novel hybrid model DeHiDe: Deep Learning-based Hybrid Model to Detect Fake News using Blockchain. The DeHiDe is a blockchain-based framework for legitimate news sharing by filtering out the fake news. It combines the benefit of blockchain with an intelligent deep learning model to reinforce robustness and accuracy in combating fake news's hurdle. It also compares the proposed method to existing state-of-the-art methods. The DeHiDe is expected to outperform state-of-the-art approaches in terms of services, features, and performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源