论文标题

通过从589.16 nm和819.71 nm共振的激光激发钠的激光激发,通过激光激发的精确光度比。

A Precise Photometric Ratio via Laser Excitation of the Sodium Layer II: Two-photon Excitation Using Lasers Detuned from 589.16 nm and 819.71 nm Resonances

论文作者

Albert, J., Budker, D., Chance, K., Gordon, I. E., Bustos, F. Pedreros, Pospelov, M., Rochester, S. M., Sadeghpour, H. R.

论文摘要

这篇文章是关于在中性钠原子中发出的两种人造恒星(我们称为“激光光度比率星”或LPRS的“激光光度比率”之星或LPRS中的第二篇文章中的第二篇文章中的第二篇文章,该恒星在中性钠原子中发出了脱氧光原子,用于精确测量的远程测量。在本文和上一篇文章中分别描述的两种技术将分别产生一个LPRS,其LPRS的黄色(589/590 nm)光子与近红外(819/820 nm)光子在中层中产生的光子的比率为1:1。这两种技术都将提供新的机制,以建立前所未有的精确度的分光光度计校准比,从地球上方大部分大气上,即即将到来的天文学和大气物理学的望远镜观测。 本文中描述的技术的优点是,使用低功率(<30 w平均功率)激光器,比使用单个500 W平均功率激光激光器在这对第一篇文章中所描述的技术更明亮(特别是更明亮的1000倍)LPR。但是,此处描述的技术需要将极化过滤器安装到望远镜摄像头中,以便从望远镜图像中充分删除激光大气雷利的反向散射,而第一篇文章中描述的技术只需要更典型的波长过滤器才能充分去除激光雷·雷利(Laser Rayle Rayle Rayle Backscatter)。

This article is the second in a pair of articles on the topic of the generation of a two-color artificial star (which we term a "laser photometric ratio star," or LPRS) of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques respectively described in both this and the previous article would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms for establishing a spectrophotometric calibration ratio of unprecedented precision, from above most of Earth's atmosphere, for upcoming telescopic observations across astronomy and atmospheric physics. The technique described in this article has the advantage of producing a much brighter (specifically, brighter by approximately a factor of 1000) LPRS, using lower-power (<30 W average power) lasers, than the technique using a single 500 W average power laser described in the first article of this pair. However, the technique described here would require polarization filters to be installed into the telescope camera in order to sufficiently remove laser atmospheric Rayleigh backscatter from telescope images, whereas the technique described in the first article would only require more typical wavelength filters in order to sufficiently remove laser Rayleigh backscatter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源