论文标题

Szegő和Widom定理,用于一类统一代数的有限的编成子代数

Szegő and Widom theorems for finite codimensional subalgebras of a class of uniform algebras

论文作者

Pfeffer, Douglas T., Jury, Michael T.

论文摘要

我们建立了Szegő的距离公式和Widom定理的版本,以在一类有限的统一代数的有限的conimentimension子代数中(通过施加有限数量的线性约束来获得)的(toeplitz家族)的可逆性。每个这样的代数自然都代表着一个繁殖的内核希尔伯特空间,这些空间在证明中起着核心作用。

We establish versions of Szegő's distance formula and Widom's theorem on invertibility of (a family of) Toeplitz operators in a class of finite codimension subalgebras of uniform algebras, obtained by imposing a finite number of linear constraints. Each such algebra is naturally represented on a family of reproducing kernel Hilbert spaces, which play a central role in the proofs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源