论文标题

流-FL:多机器人系统中时空预测的数据驱动的联合学习

Flow-FL: Data-Driven Federated Learning for Spatio-Temporal Predictions in Multi-Robot Systems

论文作者

Majcherczyk, Nathalie, Srishankar, Nishan, Pinciroli, Carlo

论文摘要

在本文中,我们展示了联合学习(FL)框架如何从连接的机器人团队中的分布式数据中共同学习。该框架通常与客户端一起收集数据,更新模型的神经网络权重,并将更新发送到服务器以汇总到全局模型。我们通过比较此概念的两个变体来探索FL的设计空间。第一个变体遵循传统的FL方法,在该方法中,服务器汇总了本地模型。在第二个变体中,我们调用Flow-fl,由于使用了基于八卦的共享数据结构,聚合过程是无服务器的。在这两个变体中,我们都使用数据驱动的机制来同步机器人在收集足够数据时贡献模型更新的学习过程。我们使用代理轨迹预测问题在多代理设置中验证我们的方法。使用集中式实现作为基准,我们研究了交错的在线数据收集,数据流的变化,参与机器人的数量以及通过在多机器人设置中的框架下放引入的时间延迟。

In this paper, we show how the Federated Learning (FL) framework enables learning collectively from distributed data in connected robot teams. This framework typically works with clients collecting data locally, updating neural network weights of their model, and sending updates to a server for aggregation into a global model. We explore the design space of FL by comparing two variants of this concept. The first variant follows the traditional FL approach in which a server aggregates the local models. In the second variant, that we call Flow-FL, the aggregation process is serverless thanks to the use of a gossip-based shared data structure. In both variants, we use a data-driven mechanism to synchronize the learning process in which robots contribute model updates when they collect sufficient data. We validate our approach with an agent trajectory forecasting problem in a multi-agent setting. Using a centralized implementation as a baseline, we study the effects of staggered online data collection, and variations in data flow, number of participating robots, and time delays introduced by the decentralization of the framework in a multi-robot setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源