论文标题
使用图神经网络的神经科学中的可推广机器学习
Generalizable Machine Learning in Neuroscience using Graph Neural Networks
论文作者
论文摘要
尽管许多研究探讨了神经科学的深入学习,但这些算法在微观范围内应用于神经系统,即与组织较低的组织相关的参数仍然相对新。通过全脑成像的进步,我们研究了深度学习模型在微观神经动力学上的性能,并使用来自线虫秀丽隐杆线虫的钙成像数据产生的紧急行为。我们表明,神经网络在神经元水平的动力学预测和行为状态分类方面表现出色。此外,我们比较了结构不可知的神经网络和图神经网络的性能,以研究是否可以将图形结构作为有利的电感偏差。为了执行此实验,我们设计了一个图形神经网络,该网络从神经活动中明确渗透了神经元之间的关系,并利用了计算过程中推断的图形结构。在我们的实验中,我们发现图形神经网络通常超过了结构的不可知模型,并且在看不见的生物上的概括中表现出色,这意味着在神经科学中的可推广机器学习的潜在途径。
Although a number of studies have explored deep learning in neuroscience, the application of these algorithms to neural systems on a microscopic scale, i.e. parameters relevant to lower scales of organization, remains relatively novel. Motivated by advances in whole-brain imaging, we examined the performance of deep learning models on microscopic neural dynamics and resulting emergent behaviors using calcium imaging data from the nematode C. elegans. We show that neural networks perform remarkably well on both neuron-level dynamics prediction, and behavioral state classification. In addition, we compared the performance of structure agnostic neural networks and graph neural networks to investigate if graph structure can be exploited as a favorable inductive bias. To perform this experiment, we designed a graph neural network which explicitly infers relations between neurons from neural activity and leverages the inferred graph structure during computations. In our experiments, we found that graph neural networks generally outperformed structure agnostic models and excel in generalization on unseen organisms, implying a potential path to generalizable machine learning in neuroscience.