论文标题
关于带有复杂乘法的Quasiplatonic Riemann表面雅各布人的注释
A note on Jacobians of quasiplatonic Riemann surfaces with complex multiplication
论文作者
论文摘要
令$ m \ geqslant 6 $为整数。在此简短的说明中,我们证明了雅各布的多种多样的jacobian种类,具有相关的自动形态学组,同构为$ c_2^2 \ rtimes_2 c_m $允许复杂的乘法。然后,我们扩展了此结果,以提供一个标准,雅各布的雅各比种类的quasiplatonic riemann表面允许复杂的乘法。
Let $m \geqslant 6$ be an even integer. In this short note we prove that the Jacobian variety of a quasiplatonic Riemann surface with associated group of automorphisms isomorphic to $C_2^2 \rtimes_2 C_m$ admits complex multiplication. We then extend this result to provide a criterion under which the Jacobian variety of a quasiplatonic Riemann surface admits complex multiplication.