论文标题
在旋转的作用下,二次运动$ \ text {bmo} $
Biparameter $\text{BMO}$ under the action of a rotation
论文作者
论文摘要
在这项工作中,我们旨在研究通过$ \ Mathbb {r}^2 $中旋转构成的作用。此$ \ text {bmo} $空间不能由旋转保留,因为它依赖于轴平行矩形的结构。我们将通过插值不平等来量化这一事实。插值不平等的一种直接应用是定向希尔伯特变换的界限。
In this work, we aim to study the action of composing by a rotation on the biparameter $\text{BMO}$ space in $\mathbb{R}^2$. This $\text{BMO}$ space is not preserved by a rotation since it relies on the structure of axis-parallel rectangles. We will quantify this fact by interpolation inequalities. One straightforward application of the interpolation inequalities is a boundedness property of directional Hilbert transforms.