论文标题

收入和能源效率驱动的延迟限制计算任务卸载和车辆边缘计算网络中的资源分配:一种深厚的增强学习方法

Revenue and Energy Efficiency-Driven Delay Constrained Computing Task Offloading and Resource Allocation in a Vehicular Edge Computing Network: A Deep Reinforcement Learning Approach

论文作者

Huang, Xinyu, He, Lijun, Chen, Xing, Wang, Liejun, Li, Fan

论文摘要

对于车载应用,任务类型和车辆状态信息,即车辆速度,对任务延迟要求产生重大影响。但是,尚未研究任务类型和车辆速度对任务延迟约束的联合影响,并且缺乏研究可能会导致任务延迟的要求与分配的计算和无线资源之间的不匹配。在本文中,我们提出了一种联合任务类型和车辆速度感知的任务卸载和资源分配策略,以降低车辆的能源成本,以执行任务并增加车辆在延迟约束中处理任务的收入。首先,我们建立联合任务类型和车辆速度感知延迟约束模型。然后,计算了在车辆边缘计算(VEC)服务器,其他车辆的本地终端和终端中执行任务执行的延迟,能源成本和收入。根据任务执行的能源成本和收入,获得了车辆的实用功能。接下来,我们制定任务卸载和资源分配的联合优化,以最大程度地提高受到任务延迟,计算资源和无线资源限制的车辆的效用级别。为了获得公式化问题的近乎最佳解决方案,提出了基于多代理深层确定性策略梯度(JORA-MADDPG)算法的联合卸载和资源分配,以最大程度地提高车辆的公用事业水平。仿真结果表明,我们的算法可以在任务完成延迟,车辆的能源成本和处理收入中实现卓越的性能。

For in-vehicle application,task type and vehicle state information, i.e., vehicle speed, bear a significant impact on the task delay requirement. However, the joint impact of task type and vehicle speed on the task delay constraint has not been studied, and this lack of study may cause a mismatch between the requirement of the task delay and allocated computation and wireless resources. In this paper, we propose a joint task type and vehicle speed-aware task offloading and resource allocation strategy to decrease the vehicl's energy cost for executing tasks and increase the revenue of the vehicle for processing tasks within the delay constraint. First, we establish the joint task type and vehicle speed-aware delay constraint model. Then, the delay, energy cost and revenue for task execution in the vehicular edge computing (VEC) server, local terminal and terminals of other vehicles are calculated. Based on the energy cost and revenue from task execution,the utility function of the vehicle is acquired. Next, we formulate a joint optimization of task offloading and resource allocation to maximize the utility level of the vehicles subject to the constraints of task delay, computation resources and wireless resources. To obtain a near-optimal solution of the formulated problem, a joint offloading and resource allocation based on the multi-agent deep deterministic policy gradient (JORA-MADDPG) algorithm is proposed to maximize the utility level of vehicles. Simulation results show that our algorithm can achieve superior performance in task completion delay, vehicles' energy cost and processing revenue.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源