论文标题

活跃系统的拉格朗日力学

Lagrangian Mechanics of Active Systems

论文作者

Solovev, Anton, Friedrich, Benjamin M.

论文摘要

我们提出了一个多尺度的建模和模拟框架,用于低雷诺的形状变化沉浸物体的流体动力学,例如生物微晶状体和活动表面。关键思想是将主要形状变化视为广义坐标,并定义共轭的广义流体动力摩擦力。方便地,可以预先计算相应的广义摩擦系数,然后重复使用以快速求解运动的动态方程。该框架将耗散系统的拉格朗日力学扩展到活跃的表面和活动的微武器,其形状动力学是由内力驱动的。作为一种应用程序,我们预测了纤毛成对的纤毛纤毛拍子模式的纤毛对中的同相和反相同步。

We present a multi-scale modeling and simulation framework for low-Reynolds number hydrodynamics of shape-changing immersed objects, e.g., biological microswimmers and active surfaces. The key idea is to consider principal shape changes as generalized coordinates, and define conjugate generalized hydrodynamic friction forces. Conveniently, the corresponding generalized friction coefficients can be pre-computed and subsequently re-used to solve dynamic equations of motion fast. This framework extends Lagrangian mechanics of dissipative systems to active surfaces and active microswimmers, whose shape dynamics is driven by internal forces. As an application case, we predict in-phase and anti-phase synchronization in pairs of cilia for an experimentally measured cilia beat pattern.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源