论文标题

从小行星带到木星特洛伊木马的次要行星的观察完成极限

Observational Completion Limit of Minor Planets from the Asteroid Belt to Jupiter Trojans

论文作者

Hendler, Nathanial P, Malhotra, Renu

论文摘要

随着发现的小行星数量的越来越多,识别观察性完整的样本对于统计分析和为太阳系动力学演化的理论模型提供了必不可少的必不可少的。我们提出了一种易于实现的方法,用于估计绝对幅度的经验观察性完整性H_lim,作为半轴轴的函数。我们的方法需要在其应用中做出更少的假设和决策,从而使实施IT的研究更加可运输和可重现,以及可扩展到在未来十年内通过Vera C.〜Rubin Perservatory对空间和时间(LSST)的遗产调查的更大的小行星数据集(LSST)。使用Semimajor轴高分辨率确定的H_LIM(a)的值,我们证明,与使用保守的H_LIM的单一值相比,主带小行星的观察性完整样本大小的比例大于2倍,而H_LIM(这种方法经常在先前的研究中经常采用)。此外,通过将H_LIM(A)的简单,身体动机的模型拟合到次要行星数据库中的7E5对象,我们的模型揭示了主皮带与主要腰带(Hungarias,Hildas和Trojans)以外的主带和小行星种群之间具有统计学意义的偏差,表明了潜在的人质差异,例如潜在的范围差异,例如其尺寸,浓度,偏心偏心或包含式分布。

With the growing numbers of asteroids being discovered, identifying an observationally complete sample is essential for statistical analyses and for informing theoretical models of the dynamical evolution of the solar system. We present an easily implemented method of estimating the empirical observational completeness in absolute magnitude, H_lim, as a function of semi-major axis. Our method requires fewer assumptions and decisions to be made in its application, making results more transportable and reproducible amongst studies that implement it, as well as scalable to much larger datasets of asteroids expected in the next decade with the Vera C.~Rubin Observatory's Legacy Survey of Space and Time (LSST). Using the values of H_lim(a) determined at high resolution in semimajor axis, a, we demonstrate that the observationally complete sample size of the main belt asteroids is larger by more than a factor of 2 compared to using a conservative single value of H_lim, an approach often adopted in previous studies. Additionally, by fitting a simple, physically motivated model of H_lim(a) to 7e5 objects in the Minor Planet Database, our model reveals statistically significant deviations between the main belt and the asteroid populations beyond the main belt (Hungarias, Hildas and Trojans), suggesting potential demographic differences, such as in their size, eccentricity or inclination distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源