论文标题

流体流动的弱压缩粒子离散方法中的隐式分子应力

Implicit Molecular Stresses in Weakly-Compressible Particle-Based Discretization Methods for Fluid Flow

论文作者

Okraschevski, Max, Buerkle, Niklas, Koch, Rainer, Bauer, Hans-Joerg

论文摘要

基于弱的基于粒子的离散方法,用于溶液的解决方案,在流体动力学群落中越来越受欢迎。这些方法中最受欢迎的一种是弱化的平滑颗粒流体动力学(WCSPH)。由于单个数值粒子的动力学由流体动态传输方程确定,因此每个定义的粒子应代表均匀的流体元件。但是,可以很容易地认为,单个粒子仅行为伪拉格朗日,因为它受体积分区误差的影响,并且几乎无法使其形状适应实际流体流动。因此,我们将假设内核支持可以更好地代表实际的流体元素。通过非平衡分子动力学(NEMD)分析,我们得出了基于核基的流体元件的等温传输方程。 NEMD分析的主要发现是一种分子应力张量,可以解释在基于弱粒子的离散方法的应用中遇到的当前问题。

Weakly-compressible particle-based discretization methods, utilized for the solution of the subsonic Navier-Stokes equation, are gaining increasing popularity in the fluid dynamics community. One of the most popular among these methods is the weakly-compressible smoothed particle hydrodynamics (WCSPH). Since the dynamics of a single numerical particle is determined by fluid dynamic transport equations, the particle per definition should represent a homogeneous fluid element. However, it can be easily argued that a single particle behaves only pseudo-Lagrangian as it is affected by volume partition errors and can hardly adapt its shape to the actual fluid flow. Therefore, we will assume that the kernel support provides a better representative of an actual fluid element. By means of non-equilibrium molecular dynamics (NEMD) analysis, we derive isothermal transport equations for a kernel-based fluid element. The main discovery of the NEMD analysis is a molecular stress tensor which may serve to explain current problems encountered in applications of weakly-compressible particle-based discretization methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源