论文标题

一致性培训的自我监督领域适应

Self-Supervised Domain Adaptation with Consistency Training

论文作者

Xiao, L., Xu, J., Zhao, D., Wang, Z., Wang, L., Nie, Y., Dai, B.

论文摘要

我们考虑用于图像分类的无监督域适应性问题。为了从未标记的数据中学习目标域感知功能,我们通过使用具有一定类型的转换(特别是图像旋转)的未标记数据来创建一个自我监督的借口任务,并要求学习者预测转换的属性。但是,获得的特征表示可能包含有关主要任务的大量无关信息。为了提供进一步的指导,我们强迫增强数据的功能表示与原始数据的特征表示。从直觉上讲,一致性会引入代表学习的其他限制,因此,学习的表示形式更有可能专注于有关主要任务的正确信息。我们的实验结果验证了所提出的方法,并证明了经典域适应基准的最新性能。代码可在https://github.com/jiaolong/ss-da-consistency上找到。

We consider the problem of unsupervised domain adaptation for image classification. To learn target-domain-aware features from the unlabeled data, we create a self-supervised pretext task by augmenting the unlabeled data with a certain type of transformation (specifically, image rotation) and ask the learner to predict the properties of the transformation. However, the obtained feature representation may contain a large amount of irrelevant information with respect to the main task. To provide further guidance, we force the feature representation of the augmented data to be consistent with that of the original data. Intuitively, the consistency introduces additional constraints to representation learning, therefore, the learned representation is more likely to focus on the right information about the main task. Our experimental results validate the proposed method and demonstrate state-of-the-art performance on classical domain adaptation benchmarks. Code is available at https://github.com/Jiaolong/ss-da-consistency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源