论文标题
晶格协同学和Upsilon不变的变形
Deformations of lattice cohomology and the upsilon invariant
论文作者
论文摘要
我们介绍了与Ozsv \'Ath,Stipsicz和Szab \'O在\ cite {Oss4}中发现的结合同源物相对应的晶格同源物的变形。通过跨形三角形计数,我们证明了与分析理论的等效性。这产生了UPSILON不变的组合公式。
We introduce deformations of lattice cohomology corresponding to the knot homologies found by Ozsv\' ath, Stipsicz and Szab\' o in \cite{OSS4}. By means of holomorphic triangles counting, we prove equivalence with the analytic theory for a wide class of knots. This yields combinatorial formulae for the upsilon invariant.