论文标题

一种用于蚂蚁菌落优化的新型量子算法

A Novel Quantum Algorithm for Ant Colony Optimization

论文作者

Ghosh, Mrityunjay, Dey, Nivedita, Mitra, Debdeep, Chakrabarti, Amlan

论文摘要

蚂蚁殖民地优化(ACO)是一种常用的元元素,用于解决复杂的组合优化问题,例如旅行推销员问题(TSP),车辆路由问题(VRP)等。但是,经典的ACO算法提供了更好的最佳解决方案,但在很大程度上却不会将计算时间缩短。可以使用量子计算提供的并行性来实现算法加速。现有用于求解ACO的量子算法是量子启发的经典算法或杂交量子古典算法。由于所有这些算法都需要经典计算的干预,因此利用量子计算在实际量子硬件上的真正潜力仍然是一个挑战。本文的主要贡献是提出一种完全量子算法来求解ACO,从而增强了易耐故障量子计算(FTQC)时代的量子信息处理工具箱。我们已经使用我们提出的自适应量子电路解决了单一源单源单个目标(SSSD)最短的路径问题,以表示真实IBMQ设备中的动态信息素更新策略。我们的量子ACO技术可以进一步用作量子甲骨文,以在完全量子设置中解决复杂的优化问题,并在可用性的情况下以显着的速度提高。

Ant colony optimization (ACO) is a commonly used meta-heuristic to solve complex combinatorial optimization problems like traveling salesman problem (TSP), vehicle routing problem (VRP), etc. However, classical ACO algorithms provide better optimal solutions but do not reduce computation time overhead to a significant extent. Algorithmic speed-up can be achieved by using parallelism offered by quantum computing. Existing quantum algorithms to solve ACO are either quantum-inspired classical algorithms or hybrid quantum-classical algorithms. Since all these algorithms need the intervention of classical computing, leveraging the true potential of quantum computing on real quantum hardware remains a challenge. This paper's main contribution is to propose a fully quantum algorithm to solve ACO, enhancing the quantum information processing toolbox in the fault-tolerant quantum computing (FTQC) era. We have Solved the Single Source Single Destination (SSSD) shortest-path problem using our proposed adaptive quantum circuit for representing dynamic pheromone updating strategy in real IBMQ devices. Our quantum ACO technique can be further used as a quantum ORACLE to solve complex optimization problems in a fully quantum setup with significant speed up upon the availability of more qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源