论文标题
对不均匀的多核生长
On inhomogeneous polynuclear growth
论文作者
论文摘要
本文研究了不均匀的几何多核生长模型,其分布与Schur功能有关。我们解释了一种在类似空间的和类似时间的方向上得出其分布函数的方法,重点是两次分布。然后考虑在KPZ尺寸限制中的两次分布的渐近学,在KPZ通用类别中延长了两倍的单个时间分布。
This article studies the inhomogeneous geometric polynuclear growth model, the distribution of which is related to Schur functions. We explain a method to derive its distribution functions in both space-like and time-like directions, focusing on the two-time distribution. Asymptotics of the two-time distribution in the KPZ-scaling limit is then considered, extending to two times several single-time distributions in the KPZ universality class.