论文标题
由巨型气态诱导的远处跨北河对象的轨道特征
Orbital features of distant trans-Neptunian objects induced by giant gaseous clumps
论文作者
论文摘要
上下文:遥远的跨北河对象的发现导致了有关外部太阳系结构的加剧讨论。 目的:我们研究了通过重力碎片在太阳星云中形成的巨型气态团块的小体的动力演化。我们试图确定该过程是否会引起远距离北极对象的轨道分布的观察到的特征。 方法:我们考虑一个简单的模型,其中包括太阳,两个点状的巨型团块,质量约为10个木星质量,以及最初位于这些团块山区的一组无质量物体。我们对两个巨大的团块的重力扰动下的小体运动进行数值模拟,它们在椭圆轨道上移动并彼此接近。将这些小物体的轨道分布与观察到的远型河内物体的分布进行比较。 结果:除了在近周的纵向中的已知分组外,我们还记录了观察到的遥远近肠对象的新特征。观察到的轨道分布表明存在具有不同动力学特征的两组远的跨核对象。我们表明,遥远的河内物体的轨道分布的主要特征可以用它们在迁移巨型气态团块的山区起源来解释。当巨大的团块以高分子轨道移动并彼此近距离接触时,小尸体会从山区弹出。 结论:小体在我们的模型中产生的轨道分布,并且观察到的远型河内物体的分布具有相似的特征。
Context: The discovery of distant trans-Neptunian objects has led to heated discussions about the structure of the outer Solar System. Aims: We study the dynamical evolution of small bodies from the Hill regions of migrating giant gaseous clumps that form in the outer solar nebula via gravitational fragmentation. We attempt to determine whether the observed features of the orbital distribution of distant trans-Neptunian objects could be caused by this process. Methods: We consider a simple model that includes the Sun, two point-like giant clumps with masses of ~ 10 Jupiter masses, and a set of massless objects initially located in the Hill regions of these clumps. We carry out numerical simulations of the motions of small bodies under gravitational perturbations from two giant clumps that move in elliptical orbits and approach each other. The orbital distribution of these small bodies is compared with the observed distribution of distant trans-Neptunian objects. Results: In addition to the known grouping in longitudes of perihelion, we note new features for observed distant trans-Neptunian objects. The observed orbital distribution points to the existence of two groups of distant trans-Neptunian objects with different dynamical characteristics. We show that the main features of the orbital distribution of distant trans-Neptunian objects can be explained by their origin in the Hill regions of migrating giant gaseous clumps. Small bodies are ejected from the Hill regions when the giant clumps move in high-eccentricity orbits and have a close encounter with each other. Conclusions: The resulting orbital distribution of small bodies in our model and the observed distribution of distant trans-Neptunian objects have similar features.