论文标题
关节(3) - 在各向异性噪声存在下球形信号的光谱域滤波
Joint SO(3)-Spectral Domain Filtering of Spherical Signals in the Presence of Anisotropic Noise
论文作者
论文摘要
我们使用方向性局部的球形谐波变换(DSLSHT)提出了一个SO(3) - 光谱域滤波框架,以估算和增强随机各向异性噪声污染的球体上随机各向异性信号的估计和增强。我们设计了一个最佳滤波器,用于过滤关节SO(3)光谱域中接收污染信号的DSLSHT表示。从关节域中的过滤表示是基础(无噪声)源信号的DSLSHT表示的最小平方误差估计值,该过滤器是最佳的。我们还从关节域中的过滤表示的源信号估算了源信号的估计。我们在存在各向异性,零均值,不相关的高斯噪声的情况下,使用地球地形图展示了提出的过滤框架的能力,并将其性能与关节空间 - 光谱域滤波框架进行了比较。
We present a joint SO(3)-spectral domain filtering framework using directional spatially localized spherical harmonic transform (DSLSHT), for the estimation and enhancement of random anisotropic signals on the sphere contaminated by random anisotropic noise. We design an optimal filter for filtering the DSLSHT representation of the noise-contaminated signal in the joint SO(3)-spectral domain. The filter is optimal in the sense that the filtered representation in the joint domain is the minimum mean square error estimate of the DSLSHT representation of the underlying (noise-free) source signal. We also derive a least-square solution for the estimate of the source signal from the filtered representation in the joint domain. We demonstrate the capability of the proposed filtering framework using the Earth topography map in the presence of anisotropic, zero-mean, uncorrelated Gaussian noise, and compare its performance with the joint spatial-spectral domain filtering framework.