论文标题

MRI数据分析的计算机视觉模型中的域移位:概述

Domain Shift in Computer Vision models for MRI data analysis: An Overview

论文作者

Kondrateva, Ekaterina, Pominova, Marina, Popova, Elena, Sharaev, Maxim, Bernstein, Alexander, Burnaev, Evgeny

论文摘要

机器学习和计算机视觉方法在医学图像分析中表现出良好的性能。目前,尚有一些应用程序用于临床用途,其原因之一是将其模型转移到来自不同来源或获取域的数据的原因很差。开发新方法和算法,用于转移训练和适应多模式医学成像数据中的域,对于精确模型的开发及其在诊所中的使用至关重要。在目前的工作中,我们概述方法用于解决机器学习和计算机视觉中的thedomain班次问题。本调查中讨论的算法包括数据处理,模型架构增强和特色培训以及在域中潜在空间中进行预测。在调查中大量讨论了自动编码神经网络及其域不变变量的应用。我们观察到适用于磁共振成像(MRI)数据分析的最新方法,并根据其性能以及提出方向进行进一步研究。

Machine learning and computer vision methods are showing good performance in medical imagery analysis. Yetonly a few applications are now in clinical use and one of the reasons for that is poor transferability of themodels to data from different sources or acquisition domains. Development of new methods and algorithms forthe transfer of training and adaptation of the domain in multi-modal medical imaging data is crucial for thedevelopment of accurate models and their use in clinics. In present work, we overview methods used to tackle thedomain shift problem in machine learning and computer vision. The algorithms discussed in this survey includeadvanced data processing, model architecture enhancing and featured training, as well as predicting in domaininvariant latent space. The application of the autoencoding neural networks and their domain-invariant variationsare heavily discussed in a survey. We observe the latest methods applied to the magnetic resonance imaging(MRI) data analysis and conclude on their performance as well as propose directions for further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源