论文标题
关于分数不均匀的哈特里方程的备注
Remarks on the fractional inhomogeneous Hartree equation
论文作者
论文摘要
本文研究了不均匀的分数schödinger方程$$ i \ dot u - ( - δ)^s u = \ pm(i_α*| \ cdot | \ cdot |^b | u |^p)|^b | u |^p)| x |^|^b |^b |^b | u |^{p-2 {p-2}给出全球存在与有限时间爆破解决方案的尖锐阈值。
This paper studies the inhomogeneous fractional Schödinger equation $$i\dot u-(-Δ)^s u=\pm(I_α*|\cdot|^b|u|^p)|x|^b|u|^{p-2}u.$$ In the mass super-critical and energy sub-critical regimes, using a Gagliardo-Nirenberg adapted to the above problem, the standing waves give a sharp threshold of global existence versus finite time blow-up of solutions.