论文标题

标准子空间的协变量均匀网

Covariant homogeneous nets of standard subspaces

论文作者

Morinelli, Vincenzo, Neeb, Karl-Hermann

论文摘要

Rindler楔形是AQFT中的基本定位区域。它们由固定楔形的单参数固定对称性的一组群体确定。 Brunetti-Guido-Longo(BGL)提供的自由场的代数规范结构来自楔形标识,BW属性和PCT定理。 在本文中,我们通过以下方式概括了这张照片。首先,给定一个$ \ mathbb z_2 $ raded Lie Group,我们定义了一个抽象楔形区域的(扭曲)本地poset。我们对支持抽象楔子的代数分类(半imple),并研究特殊的楔形配置。这使我们能够显示出此类一般谎言基团的Haag-Kastler单粒子净公理的类似物,而无需指任何特定的时空。这组公理支持通过概括BGL构造获得的第一个量化网。大型谎言群体可以进行建设,并提供几种新型号。我们进一步评论正交楔形和对称性的扩展。

Rindler wedges are fundamental localization regions in AQFT. They are determined by the one-parameter group of boost symmetries fixing the wedge. The algebraic canonical construction of the free field provided by Brunetti-Guido-Longo (BGL) arises from the wedge-boost identification, the BW property and the PCT Theorem. In this paper we generalize this picture in the following way. Firstly, given a $\mathbb Z_2$-graded Lie group we define a (twisted-)local poset of abstract wedge regions. We classify (semisimple) Lie algebras supporting abstract wedges and study special wedge configurations. This allows us to exhibit an analog of the Haag-Kastler one-particle net axioms for such general Lie groups without referring to any specific spacetime. This set of axioms supports a first quantization net obtained by generalizing the BGL construction. The construction is possible for a large family of Lie groups and provides several new models. We further comment on orthogonal wedges and extension of symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源